
Journal of Computational Physics 223 (2007) 822–845

www.elsevier.com/locate/jcp
A relaxation-projection method for compressible
flows. Part I: The numerical equation of state

for the Euler equations

Richard Saurel *, Erwin Franquet, Eric Daniel, Olivier Le Metayer

Polytech’Marseille, University Institute of France, Université de Provence and SMASH Project UMR CNRS 6595 – IUSTI-INRIA,
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Abstract

A new projection method is developed for the Euler equations to determine the thermodynamic state in computational
cells. It consists in the resolution of a mechanical relaxation problem between the various sub-volumes present in a com-
putational cell. These sub-volumes correspond to the ones traveled by the various waves that produce states with different
pressures, velocities, densities and temperatures. Contrarily to Godunov type schemes the relaxed state corresponds to
mechanical equilibrium only and remains out of thermal equilibrium. The pressure computation with this relaxation pro-
cess replaces the use of the conventional equation of state (EOS). A simplified relaxation method is also derived and pro-
vides a specific EOS (named the Numerical EOS). The use of the Numerical EOS gives a cure to spurious pressure
oscillations that appear at contact discontinuities for fluids governed by real gas EOS. It is then extended to the compu-
tation of interface problems separating fluids with different EOS (liquid–gas interface for example) with the Euler equa-
tions. The resulting method is very robust, accurate, oscillation free and conservative. For the sake of simplicity and
efficiency the method is developed in a Lagrange-projection context and is validated over exact solutions. In a companion
paper [F. Petitpas, E. Franquet, R. Saurel, A relaxation-projection method for compressible flows. Part II: computation of
interfaces and multiphase mixtures with stiff mechanical relaxation. J. Comput. Phys. (submitted for publication)], the
method is extended to the numerical approximation of a non-conservative hyperbolic multiphase flow model for interface
computation and shock propagation into mixtures.
� 2006 Elsevier Inc. All rights reserved.
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0. Introduction

The Godunov method, its extensions and approximate versions, is the most popular method to solve
hyperbolic systems of conservation laws. However, inaccuracies and even computational failure appear
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when dealing with complicated equations of state and interfaces separating fluids governed by different
EOS [1,9,11,18,20]. Most of these inaccuracies do not come from the Riemann problem solution but are
related to the use of cell averaged conservative variables used for the pressure computation. Indeed, a com-
putational cell contains several states with different pressures, velocities, densities and temperatures result-
ing of wave’s propagation inside the cell. From these non-equilibrium states, an average state is computed.
With conventional methods, it is assumed that this average state can be used for the pressure and temper-
ature computation with the help of the EOS. At this point, the EOS is used with the cell averaged vari-
ables. This is the origin of the inaccuracies as the EOS is aimed to relate local thermodynamic variables
and not averaged ones. Such a procedure results also in the determination of a single temperature. The
computational cell having a finite size and heat conduction being absent of the equations there is no reason
that the various temperatures present inside the cell after waves propagation relax to a single equilibrium
temperature. It results in pressure and velocity oscillations and even in computational failure when the
equation of state is very nonlinear or discontinuous (discontinuous coefficients of the EOS appear at mate-
rial interfaces).

In other words, in a given cell, the pressure p and if necessary the temperature T are computed with the
equations of state p = p(q,e) and T = T(q,e) with cell averaged density Æqæ and internal energy Æeæ. It is
assumed that the cell pressure and temperature can be obtained as:
hpi ¼ pðhqi; heiÞ; hT i ¼ T ðhqi; heiÞ ð0:1Þ

even if the equations of state are nonlinear functions of density and internal energy. As the equations of state
are valid only with local variables (p = p(q,e), T = T(q,e)) and the cell contains several temperatures and den-
sities, the use of (0.1) is illicit.

In the present paper, we propose a new method to obtain the cell pressure by solving a relaxation system
where the equilibrium state corresponds to mechanical equilibrium only. With the new projection method the
computational cell is divided in sub-volumes corresponding to the distance covered by the various waves dur-
ing the time step. For example, with a Lagrangian method, only two waves enter a computational cell leading
to three separate sub-volumes. These sub-volumes contain different states regarding pressure, velocity, density
and temperature. Instead of averaging the conservative variables present in the various sub-volumes, a
mechanical relaxation system is built that expresses the various sub-volume interactions. The asymptotic solu-
tion is determined as a set of algebraic relations. Solution of this system provides the cell pressure and velocity
at mechanical equilibrium while the sub-volumes states remain out of thermal equilibrium. The relaxed state,
determined at the end of each time step for each computational cell prevents the use of the EOS (0.1) with
averaged variables.

This method is demonstrated to be equivalent to the Godunov method when used with the ideal gas and
stiffened gas equations of state. In the context of more complicated equations of state (Mie–Grüneisen for
example) the method is shown to converge to the exact solution with oscillation free solutions while the Godu-
nov method produces spurious oscillations that possibly result in computational failure.

The relaxation method being computationally expensive, an approximate version is derived. It results in a
numerical EOS of explicit form that replaces Eq. (0.1). It is first developed in the context of the Mie-Gruneisen
EOS for a single fluid. Second, it is extended to the computation of interface problems when equations of state
parameters are discontinuous. With the numerical EOS, conservative and oscillation free results are obtained.
The method is robust and of comparable computational cost as conventional methods used for the Euler
equations. Extension of this method to the numerical approximation of a non-conservative hyperbolic multi-
phase flow model is the aim of a companion paper [12].

The paper is organized as follows.
The relaxation-projection method is simplified when the number of sub volumes inside a computational cell

is limited. We adopt a Lagrange-projection method in order to only have three sub-volumes. The basis of
Lagrange-projection methods with conventional Godunov averages is recalled in Section 1.

In Section 2, the relaxation-projection method is presented. First, the relaxation system is built. It resembles
to pressure and velocity relaxation systems used for multiphase flows [14,16]. Second, an approximate integra-
tion of the relaxation system is done resulting in an algebraic nonlinear system. Its resolution provides the cell
pressure.
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The method is compared to the Godunov average in Section 3. A demonstration is given showing that both
methods identify when the ideal gas and stiffened gas EOS are used. It also explains why the Godunov method
is inaccurate for more complex EOS.

The method being computationally expensive, a simplified version is derived in Section 4. Under mild
assumptions, the asymptotic solution of the relaxation system is provided by some kind of EOS (the numerical
EOS) that allows the cell pressure computation as a function of the same variables as Eq. (0.1) complemented
by the distances (or volumes) covered by the various waves entering the computational cell. The numerical
EOS is first developed for the Mie-Gruneisen EOS and then extended in Section 5 to the computation of inter-
face problems where the EOS parameters are discontinuous. Computational results are validated against exact
solutions and show a perfect agreement.

1. Basis of Lagrange-projection methods with conventional averages

The projection-relaxation method developed in this paper is based on the asymptotic solution of a mechan-
ical relaxation problem involving the various sub-volumes present in a computational cell. These sub-volumes
correspond to the propagation distances of the various waves during a time step. This method is easier to
implement and to present in the context of Lagrange-projection methods. In this case a computational cell
is divided in three sub-volumes defined by the two entering acoustic or shock waves. The use of a conventional
Eulerian method leads to a variable number of sub-volumes ranging from 1 to 7 that complicates both pre-
sentation and implementation. Other arguments in favor of this strategy are related, for example, to sonic
points that do not require specific treatment with Lagrange-projection methods.

Thus, the basis of Lagrange-projection methods is recalled in one space dimension. The system of partial
differential equations to solve is:
oU
ot
þ oF ðUÞ

ox
¼ 0 ð1:1Þ
with U = (q,qu,qE)T and F(U) = (qu,qu2 + p, (q E + p)u)T. The total energy is defined by E ¼ eþ 1
2
u2 and the

pressure is given, for example, by the stiffened gas (SG) EOS:
p ¼ ðc� 1Þqe� cp1: ð1:2Þ

In these equations, q is the density, u is the velocity, p is the pressure, e is the internal energy, c is the poly-

tropic coefficient and p1 is a constant reference pressure.
The first step of this method consists in the solution of the Euler equations in Lagrange coordinates. The

second step corresponds to the projection of the solution on a fixed (Eulerian) mesh.

1.1. Lagrange step

Let us consider a computational cell Ci(t) = [xi�1/2(t), xi+1/2(t)]. During a time step, the cell boundaries
move with constant velocities:
xnþ1
i�1=2 ¼ xn

i�1=2 þ Dtu�i�1=2; ð1:3Þ
where Dt = tn+1 � tn is the time step and u�i�1=2 is the velocity obtained from the Riemann problem solution at
the considered cell boundary.

The integration of the Euler equations over time varying cells reads:
Z tnþ1

tn

d

dt

Z
CiðtÞ

U dx dt þ
Z tnþ1

tn

Z
SiðtÞ
ðF ðUÞ � u�UÞ dS dt ¼ 0; ð1:4Þ
where Si(t) represents the contour of the control volume Ci(t). In 1D and under CFL restriction formula (1.4)
becomes:
U nþ1
i ¼ ½Dxn

i Un
i � DtðF �lagiþ1=2

� F �lagi�1=2
Þ�=Dxnþ1

i ; ð1:5Þ
where Dxi = xi+1/2 � xi�1/2 and Flag = F(U) � uU = (0, p,pu)T.
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Formula (1.5) corresponds to a first order time and space approximation of the Euler equations. By using
piecewise linear reconstruction, there is no difficulty to extend the Lagrange step to second order, following the
MUSCL algorithm [22].

The vector U nþ1
i being determined it is now projected onto the Eulerian grid.

1.2. Projection onto the Eulerian grid

The vector of conservative variables being determined on the Lagrangian mesh, the solution can be pro-
jected onto the Eulerian mesh. In Fig. 1, the boundaries trajectories of the Lagrangian cells are shown in
dashed lines. In the same graph three levels of conservative variables (grey areas) are shown: at the left of
the considered Lagrangian cell, at the right of the Lagrangian cell and in the cell. The Eulerian cells are filled
by three flow states, present in segments L1, L2 and L3.

The solution in the Eulerian cell is thus obtained by a simple geometrical projection of the conservative
variables:
Fig. 1.
in the
Unþ1
i;e ¼

1

Dxi
½L1U nþ1

i�1 þ L2Unþ1
i þ L3Unþ1

iþ1 �; ð1:6Þ
where the subscript ‘e’ in U nþ1
i;e denotes the solution in the Eulerian grid. The segments’ lengths are given by:
L1 ¼ maxð0; u�i�1=2ÞDt; L3 ¼ �minð0; u�iþ1=2ÞDt; L2 ¼ Dxi � L1 � L3:
By introducing normalized length (or volume fractions) bj ¼
Lj

Dxi
, j = 1, . . . , 3. Formula (1.6) becomes:
Unþ1
i;e ¼

X3

j¼1

bjU
nþ1
j ð1:7Þ
with Unþ1
1 ¼ U nþ1

i�1 , U nþ1
2 ¼ Unþ1

i , U nþ1
3 ¼ U nþ1

iþ1 .
To proceed to the next time step the pressure computation is necessary. The internal energy is obtained

from ðqeÞnþ1
i;e ¼ ðqEÞnþ1

i;e �
ðquÞnþ12

i;e

2ðqÞnþ1
i;e

and the pressure is computed by the EOS (1.2).

There is no difficulty to reduce the numerical diffusion of the projection step (1.6) by using piecewise-linear
reconstruction [21], instead of the piecewise constant functions shown in Fig. 1.

There are some advantages with Lagrange-projection methods:

– The Riemann problem is much simpler compared to conventional Eulerian methods. Indeed, only the pres-
sure and the velocity are to be known at the cell boundaries.

– The rarefaction waves and the possible sonic points do not require any special treatment. This advantage
will be of major importance when multiphase flows will be considered.
L3L1

xi-1 xi+1xi

t

t+ t

x

Eulerian cell boundary Lagrangian cell boundary (at t+ t)
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Ui Ui+1
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L
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Schematic view of the different Lagrangian and Eulerian cells. The grey areas correspond to three levels of conservative variables,
cell and its neighbors.
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There are obviously some drawbacks. The most important is related to the extension to non-structured
meshes. We restrict here to applications that can be solved with Cartesian meshes.

1.3. Examples

Lagrange-projection methods are quite unusual compared to Eulerian methods. It is thus interesting to
report the behavior of a second order Lagrange-projection method on a simple but relevant test case. Let
us consider a 1 m length shock tube, containing two chambers separated by an interface at location
x = 0.5 m. Each chamber is filled with air (c = 1.4, p1 = 0 Pa). At the left of the interface, the initial pressure
is equal to 2 · 105 Pa and the initial density is equal to 2 kg/m3. At the right, the pressure is equal to 105 Pa,
and the density is equal to 1 kg/m3. The fluid is initially at rest in both chambers. The solution is shown at time
t = 1.01 ms. A mesh involving 100 cells is used.

The solution of the Lagrange-projection method with piecewise linear reconstruction and Superbee limiter
in both Lagrange and projection steps is used. A 2-shocks Riemann solver [19] is used. In Fig. 2, the density,
pressure and velocity profiles are shown with symbols and compared to the exact solution with lines.

The Lagrange-projection method presented in this section provides results of comparable accuracy to sec-
ond order Eulerian Godunov type schemes. The cell pressure is computed by the means of the EOS (1.2) with
the cell averages as arguments, provided by Formula (1.7). When dealing with complex EOS, this procedure
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Fig. 2. Shock tube problem. Comparison of the Lagrange-projection with Superbee limiter (symbols) and the exact solution (solid lines).
A mesh involving 100 cells is used and the solution is shown at time t = 1.01 ms. A comparable accuracy to second order Eulerian
Godunov schemes is reported.
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based on the EOS with cell averages produces pressure and velocity oscillations at contact discontinuities. This
is not specific of the Lagrange-projection method nor of the Riemann solver. It occurs with any type of numer-
ical scheme as soon as the EOS is used with cell averages as arguments. For example, let us consider a fluid
that obeys a Mie–Grüneisen type EOS. More precisely, we use the Cochran–Chan EOS [3] presented under
Mie–Grüneisen form to describe liquid nitromethane:
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Fig. 3.
symbo
pðq; eÞ ¼ qCðe� ekðqÞÞ þ pkðqÞ;

with
ekðqÞ ¼
A1

qrefðE1 � 1Þ
q

qref

� �E1�1

� A2

qrefðE2 � 1Þ
q

qref

� �E2�1

;

pkðqÞ ¼ A1

q
qref

� �E1

� A2

q
qref

� �E2

:

The data used in the present simulations are: C = 1.19, qref = 1134 kg/m3, A1 = 0.819181 · 109 Pa,
A2 = 1.50835 · 109 Pa, E1 = 4.52969 and E2 = 1.42144.

We consider the advection of a density discontinuity in a uniform flow moving at 1000 m/s in a uniform
pressure field. The pressure is taken equal to 2 · 1010 Pa, characteristic of detonation pressure level. The dis-
continuity is initially located at x = 0.5 m and separates two states of density q = 1134 kg/m3 on the left and
lower density (q = 500 kg/m3) on the right. The Godunov scheme (Eulerian version) is used with an exact Rie-
mann solver. The Riemann solver is detailed in [13] and improved in [12]. The results are shown at time
t = 40 ls in Fig. 3. The mesh involves 500 cells.
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Advection of a density discontinuity with the Cochran–Chan EOS. The solution obtained with the Godunov scheme is shown with
ls and the exact solution is shown with solid lines. Spurious oscillations appear.
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Unphysical oscillations appear at the contact discontinuity and propagate in the flow. It is the reason why a
new relaxation-projection method is developed to replace the conventional procedure based on cell averages.
With this new method, the cell pressure is determined by solving a relaxation system involving the various
non-equilibrium sub-volumes present in a computational cell. These sub-volumes correspond to the ones trav-
eled by the incoming waves into the cell.

2. A relaxation-projection method to compute the cell pressure

The relaxation-projection method presented hereafter is developed to cure some anomalous behavior of
Godunov type methods in the context of the Euler equations when dealing with complex EOS.

The method requires that each wave be treated as a discontinuity. Iterative 2-shocks Riemann solver [19] or
non-iterative approximate solvers [7] are possible candidates. Such approximation has no serious conse-
quences on rarefaction waves computation, as shown in the previous example of Fig. 2, where a 2-shocks Rie-
mann solver was used. A schematic view of the wave’s propagation into a Lagrangian cell is shown in Fig. 4.

Only two waves enter the Lagrangian cell:

– Sþi�1=2 represents a right-facing shock or rarefaction wave.
– S�iþ1=2 represents a left-facing shock or rarefaction wave.

The cell volume at time tn+1 is given by: Dxnþ1
i ¼ Dxn

i þ Dtðu�iþ1=2 � u�i�1=2Þ.
This volume can be split into three sub-volumes, each of them containing the fluid in three different states:

L1 ¼ DtðSþi�1=2 � u�i�1=2Þ, L3 ¼ Dtðu�iþ1=2 � S�iþ1=2Þ; L2 ¼ Dxnþ1
i � L1 � L3.

As previously, volume fractions can be defined: bj ¼
Lj

Dxnþ1
i

, j = 1, . . . , 3.
The cell average state is obtained by:
U nþ1
i ¼

X3

j¼1

bjU
�
j ð2:1Þ
with U �1 ¼ U �R;i�1=2, U �2 ¼ U n
i , U �3 ¼ U �L;iþ1=2, where indexes L and R refer to the left- and right- states in the

Riemann problem.
When dealing with conservation laws it is quite straightforward to show the equivalence of Formulae (2.1)

and (1.5). Formula (1.5) is often preferred because of its ability to accept larger time steps. However, with both
formulas, computation of the pressure induces errors. Indeed, as mentioned in Section 0, the EOS is valid only
with local variables, not averaged ones. Here, each sub-volume Lj contains a fluid in a state denoted by U �j . All
these states correspond to different densities, pressures, velocities and temperatures. Thus, the use of the equa-
tion of state with cell averaged variables, Æpæ = p(Æqæ, Æeæ), ÆTæ = T(Æqæ, Æeæ), where the cell average density Æqæ
and internal energy Æeæ are taken from the vector of averaged conservative variables U nþ1

i , is illicit. Such
approximation is usually accepted but produces important errors, especially when dealing with complex EOS.
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Fig. 4. Schematic view of the waves incoming a Lagrangian cell.
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To cure these errors we replace the EOS by a relaxation system connecting the various non-equilibrium
states inside the cell. We then determine the equilibrium pressure in the Lagrangian cell as the asymptotic solu-
tion of this relaxation system. We present hereafter the relaxation system.

2.1. Relaxation system

The waves have entered the considered Lagrangian cell and each sub-volume Lj contains a fluid in a state
different of the one in the direct neighboring sub-volume. All physical variations that make the solution evolve
have already been involved in the incoming waves shown in Fig. 3, and the goal is now to determine the cell
equilibrium pressure.

As physical variations due to interactions with the neighboring cells are already contained in the current
cell, we isolate the cell from the others. The cell now contains three non-equilibrium states in three sub-vol-
umes and interactions occur between these states in the isolated cell.

For the sake of simplicity, let us consider two sub-volumes only inside a cell. Consider the situation shown
in Fig. 4 and imagine that Sþi�1=2 is a right-facing shock or rarefaction wave and that S�iþ1=2 has zero amplitude,
and thus produces no variation. Such a situation is shown in Fig. 5.

At the beginning of the relaxation process (s = 0), two states are present inside the cell separated by a dis-
continuity corresponding to the incoming wave position. These states correspond to the ones obtained from
the Riemann problem solution. The cell being isolated from the neighboring ones, periodic boundary condi-
tions are present on the right and left cell boundaries. From this initial situation, the sub-volumes expand or
contract according to their pressure and velocity differentials. The sub-volumes also move inside the cell until
they reach pressure and velocity equilibrium when pseudo time s tends to infinity.

The first issue with the present method consists in the building of the relaxation system that drives the non-
equilibrium sub-volumes and states toward mechanical equilibrium.

In each sub-volume, the fluid is governed by the Euler equations. In order to select the appropriate state in
each sub-volume j, we introduce a characteristic function Xj:
Fig. 5.
The sit
s = 0.
have d
X jðx; sÞ ¼
1 if x belongs to the state j;

0 otherwise:

�

This function obeys the evolution equation:
oX j

os
þ r

oX j

ox
¼ 0; ð2:2Þ
where r represents the local interface velocity.
The Euler equations (1.1) are valid for any state of the fluid. Here, this system is completed by a trivial iden-

tity ðo1
os þ o0

ox ¼ 0Þ that simplifies the presentation of the volume fraction equation. Thus system (1.1) now reads:
0>τ

)(U1 τ )(U2 τ)(U2 τ

2/1ix +

periodic
boundary
conditions

periodic
boundary
conditions

*
1U *

2U

0=τ2/1ix −

Schematic view of two non-equilibrium states inside a cell resulting of a single right-facing wave emerging of the left cell boundary.
uation on top corresponds to the one at the end of wave propagation and at the beginning of the relaxation process, at pseudo time
The situation at the bottom corresponds to the one during the relaxation process. The volumes of fluids have moved as the states
ifferent velocities and pressures. Periodic boundary conditions are present as the cell is isolated from the others.
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oU
os
þ oF ðUÞ

ox
¼ 0 ð2:3Þ
with U = (1,q,qu,qE)T and F(U) = (0,qu,qu2 + p,(qE + p)u)T.
The average state in each sub volume is obtained by:

– Selecting the corresponding state. This step is achieved by multiplying the Euler equations (2.3) by the
characteristic function Xj.
– Integrating over space the selected system.

This method has been developed in the context of multiphase mixtures by Abgrall and Saurel [2], Saurel
et al. [17], Chinnayya et al. [4], Le Metayer et al. [10]. In the present context we have to integrate
Z xiþ1=2

xi�1=2

oX jU
os
þ oX jF

ox

� �
dx ¼

Z xiþ1=2

xi�1=2

ðF � rUÞ oX j

ox
dx: ð2:4Þ
With the previous notations and with the help of the trivial identity, the evolution of the characteristic func-
tion is recovered.

The flux divergence vanishes due to the presence of periodic boundary conditions. The system now reduces
to:
 Z xiþ1=2

xi�1=2

oX jU
os

dx ¼
Z xiþ1=2

xi�1=2

ðF � rUÞ oX j

ox
dx: ð2:5Þ
The terms in the right-hand side of this equation represent the Lagrangian flux:
F lag ¼ F � rU ¼ ð�u; 0; p; puÞT:

At each interface separating two states the Lagrangian flux is constant, as the interface condition

corresponds to constant pressure and velocity. This remark renders possible integration of (2.5). For state
1 it reads:
o

os

Z xiþ1=2

xi�1=2

X 1U dx ¼ F �lag;12½X 1�12 þ F �lag;21½X 1�21: ð2:6Þ
The two terms on the right-hand side of (2.6) come from the two interfaces present in the cell. At these
interfaces only, the gradient of the characteristic function is non zero. At these locations, two instances are
possible:

– State 1 is on the left and state 2 on the right. Such situation corresponds to the flow pattern (12).
– State 2 is on the left and state 1 on the right, corresponding to the flow pattern (21).

For each flow pattern (12) or (21) the Riemann problem is solved and the Lagrangian flux is computed.
This Lagrangian flux is constant at the location where

oX j

ox 6¼ 0, i.e. at the interfaces. Consequently, the product
ðF � rUÞoX j

ox is integrated easily. It provides the two terms of Eq. (2.6), where:

– F �lag;12 represents the Lagrangian flux, solution of the Riemann problem with state 1 on the left and state 2
on the right,

– [X1]12 represents the jump of the characteristic function [X1] with fluid 1 on the left and fluid 2 on the right.

With these notations, it is easily deduced that [X1]12 = �1 and [X1]21 = 1.
Thus, Eq. (2.6) reduces to:
o

os

Z xR

xL

U 1 dx ¼ F �lag;21 � F �lag;12; ð2:7Þ
where xL and xR represent the left and right boundaries of the sub-volume of state 1.
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By defining the state average:
U 1 ¼
1

xR � xL

Z xR

xL

U 1 dx:
Eq. (2.7) becomes:
oðxR � xLÞU 1

os
¼ F �lag;21 � F �lag;12:
Now, dividing this result by Dx = xi+1/2 � xi�1/2 we get:
ob1U 1

os
¼ 1

Dx
ðF �lag;21 � F �lag;12Þ ð2:8Þ
where b1 ¼ xR�xL

Dx represents the volume fraction of state 1.
System (2.8) corresponds to a relaxation system. In order to determine the relaxation parameters, the

Lagrangian flux has to be developed. It is function only of interface pressure and velocity. Explicit expressions
for these variables are available from the acoustic solver [6], in the limit of small amplitude waves:
p�12 ¼
Z2p1 þ Z1p2

Z1 þ Z2

þ Z1Z2

Z1 þ Z2

ðu1 � u2Þ;

u�12 ¼
Z1u1 þ Z2u2

Z1 þ Z2

þ p1 � p2

Z1 þ Z2

;

ð2:9Þ
where Zj = (qc)j represents the acoustic impedance of state j and cj the corresponding speed of sound. With the
help of (2.9), system (2.8) can be expanded to:
ob1

os
¼ lðp1 � p2Þ;

ob1�q1

os
¼ 0;

ob1q1u1

os
¼ kðu2 � u1Þ;

ob1q1E1

os
¼ kuIðu1 � u2Þ � lpIðp1 � p2Þ:

ð2:10Þ
With the interface variables:
uI ¼
Z1u1 þ Z2u2

Z1 þ Z2

and pI ¼
Z2p1 þ Z1p2

Z1 þ Z2

;

and relaxation coefficients:
l ¼ 2

DxðZ1 þ Z2Þ
and k ¼ lZ1Z2:
These relaxation parameters control, respectively, the rates at which pressure and velocity equilibriums are
reached. An analogous system is obtained for state 2.

It appears clearly from system (2.10) that conservation is guaranteed, as well as the saturation constraintP
jbj ¼ 1. As this system relaxes toward a unique pressure and velocity, it can be used for the pressure and

velocity computation inside the cell, instead of the use of the EOS with conventional cell averages as argu-
ments. Such computation has to be done at the end of each time step in the limit s! +1.

Before examining the practical use of such a method, system (2.10) has to be extended to a computational
cell involving three sub-volumes. Such extension is done by noting that, in the preceding context of two states,
a more convenient form of system (2.10) is available:
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ob1

os
¼ d

Z1

ðp1 � pIÞ;

ob1�q1

os
¼ 0;

ob1q1u1

os
¼ dZ1ðuI � u1Þ;

ob1q1E1

os
¼ d uIZ1ðuI � u1Þ �

pI

Z1

ðp1 � pIÞ
� �

;

where d ¼ 2
Dx.

Therefore, the extension to the case to three states reads:
obj

os
¼ d

Zj
ðpj � pIÞ;

objqj

os
¼ 0;

objqjuj

os
¼ dZjðuI � ujÞ;

objqjEj

os
¼ d uIZjðuI � ujÞ �

pI

Zj
ðpj � pIÞ

� �
ð2:11Þ
with uI ¼ Z1u1þZ2u2þZ3u3

Z1þZ2þZ3
and pI ¼

p1

Z1
þ

p2

Z2
þ

p3

Z3
1

Z1
þ 1

Z2
þ 1

Z3

.

The state volume average symbol has been omitted for the sake of conciseness. Again, it appears that sys-
tem (2.11) guarantees mass, momentum and energy conservation as well as the saturation constraintP

jbj ¼ 1.
Examine now the entropy inequality. We first write the energy equation under the form:
objqjEj

os
¼ �pI

obj

os
þ uI

objqjuj

os
:

By combining this equation with the mass and momentum equations we obtain:
oej

os
þ ðuj � uIÞ

ouj

os
þ pI

ovj

os
¼ 0 ð2:12Þ
with vj = 1/qj.
By using the Gibbs identity, we obtain the following evolution equation for the entropy in sub-volume j:
T j
osj

os
¼ ðuI � ujÞ

ouj

os
þ ðpj � pIÞ

ovj

os
:

The combination of the volume fraction, mass and momentum equations yields:
bjqjT j
osj

os
¼ d ZjðuI � ujÞ2 þ

ðpj � pIÞ
2

Zj

 !
: ð2:13Þ
It shows that the entropy production in each sub-volume (for each state of the fluid) is positive or null: the
total production for the system is therefore null or positive.

This relaxation problem is thus well-posed and can lead to the determination of the pressure and the veloc-
ity in the cell in the asymptotic limit s! +1. Nevertheless, the numerical integration of the ordinary differ-
ential equation (2.11) is too much expensive and not necessary since only the asymptotic state is required. In
the next paragraph, this asymptotic solution is reached by an approximate integration.
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2.2. Integration of the relaxation problem

Let us denote by the superscript 0 all the variables related to the Riemann problem solution in the Lagrang-
ian cell. The relaxed state at mechanical equilibrium will be denoted by the superscript *.

2.2.1. Principles of the relaxed state determination

Integration of Eq. (2.12) between these two states reads:
Z þ1

0

dejðsÞ
ds

dsþ
Z þ1

0

ðujðsÞ � uIðsÞÞ
dujðsÞ

ds
dsþ

Z þ1

0

pIðsÞ
dvjðsÞ

ds
ds ¼ 0:
It can be written as:
e�j � e0
j þ

Z u�

u0
j

uj duj � ûIj

Z u�

u0
j

duj þ p̂Ij

Z v�j

v0
j

dvj ¼ 0:
Or, more simply:
e�j � e0
j þ p̂Ijðv�j � v0

j Þ ¼ qj ð2:14Þ
with
qj ¼
1

2
ðu� � u0

j Þð2ûIj � ðu� þ u0
j ÞÞ;

p̂Ij ¼
1

v�j � v0
j

Z þ1

0

pI

dvj

ds
ds and ûIj ¼

1

u� � u0
j

Z þ1

0

uI
duj

ds
ds:
In these equations, p̂Ij and ûIj denote the averages during the relaxation process of the interface pressure and
velocity of state j. The velocity at relaxed state is denoted by u*.

These averaged interface variables have to be determined but we first suppose that their expressions are
known in order to present the solution procedure. Their determination will be secondly examined.

The solution procedure starts with the mass conservation of the mixture:
q� ¼
X

j

b�j q
�
j ¼

X
j

b0
j q

0
j ¼ q0 ¼ q: ð2:15Þ
The mass equation of each sub-volume implies: b�j q
�
j ¼ b0

j q
0
j .

That is to say:
Y �j ¼
b�j q

�
j

q�
¼

b0
j q

0
j

q0
¼ Y 0

j ¼ Y j: ð2:16Þ
The momentum conservation of the mixture reads:
P

jb
�
j q
�
j u�j ¼

P
jb

0
j q

0
j u0

j .

At relaxed state we have u�j ¼ u�. The mixture momentum equation becomes:
u� ¼
P

jb
0
j q

0
j u0

jP
jb
�
j q
�
j
:

It implies the relaxed velocity expression:
u� ¼
X

j

Y ju0
j : ð2:17Þ
The determination of the relaxed pressure requires the use of the EOS e = e(v,p). The EOS is used to relate
only thermodynamic variables of a given state, not the cell average ones.

For a given cell, as p̂Ij and ûIj are supposed known expressions, p* and the v�j ðj ¼ 1; 2; 3Þ form a set of four
unknowns. Relation (2.14) then provides three equations that may be written as:
e�j ðv�j ; p�Þ � e0
j þ p̂Ijðv�j � v0

j Þ ¼ qj: ð2:18Þ
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The last equation to close the system is obtained by the saturation constraint:
P

jbj ¼ 1, that can be written
as:
 X

j

mjvjðp�Þ � 1 ¼ 0 ð2:19Þ
with mj = bjqj the mass in each sub-volume (which is constant during the relaxation process).
The three equations (2.18), completed by Eq. (2.19), form a nonlinear system of four equations for four

unknowns (v�1; v
�
2; v
�
3; p

�Þ which is solved by a Newton–Raphson method. The iterative process depending only
on the pressure p*, a simple numerical procedure is easily derived. Let us now examine the possible ways to
determine the functions p̂Ij and ûIj that realize the closure of (2.14).
2.2.2. Estimates of the interface variables averages

The interface variables averages ûIj and p̂Ij have to be determined. As a guideline, the choice of these vari-
ables must fulfill energy conservation and entropy inequality.
2.2.2.1. Energy conservation. By grouping internal and kinetic energies, Eq. (2.14) reads:
E�j � E0
j þ p̂Ijðv�j � v0

j Þ ¼ ðu� � u0
j ÞûIj;
and the summation over all sub-volumes reads:
X
j

Y jE�j �
X

j

Y jE0
j þ

X
j

p̂IjY jðv�j � v0
j Þ ¼

X
j

Y jûIjðu� � u0
j Þ: ð2:20Þ
Moreover, the total energy of the mixture is defined by E ¼
P

jY jEj and the conservation of the energy
implies E* � E0 = 0. That immediately imposes a constraint on Eq. (2.20) in order to guarantee energy
conservation:
X

j

Y j½�p̂Ijðv�j � v0
j Þ þ ûIjðu� � u0

j Þ� ¼ 0: ð2:21Þ
Thanks to the saturation constraint
P

jbj ¼ 1 which can be written as
P

jqY j=qj ¼ 1, we have:
X
j

Y j=qj ¼ 1=q; or
X

j

Y jvj ¼ v: ð2:22Þ
The mixture mass conservation (2.15) implies v* = v0.
With the help of relation (2.17) a sufficient condition appears in order that (2.21) be satisfied: if ûIj and p̂Ij

do not depend on j, then the energy conservation is guaranteed. It consists in an important simplification but a
little restriction regarding the choice of these variables. So, another constraint is considered.
2.2.2.2. Entropy inequality. The use of the second law of thermodynamics is rendered easy if it is assumed that
the evolutions of all the variables are infinitesimal. Thus, Eq. (2.14) becomes:
Dej þ ðuj � ûIÞDuj þ p̂IDvj ¼ 0; ð2:23Þ
where symbol D represents a small perturbation and the interface variables averages ûI and p̂I are assumed
independent on j.

By using the Gibbs identity, the entropy variation reads:
T jDsj ¼ ðpj � p̂IÞDvj þ ðûI � ujÞDuj: ð2:24Þ
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The sign of this variation must be analyzed. To do this, Dvj has to be expressed along the thermodynamic
path corresponding to (2.23). By expanding this relation:
oej

opj

�����
vj

Dpj þ p̂I þ
oej

ovj

����
pj

 !
Dvj ¼ ðûI � ujÞDuj;
and reminding that
oej

ovj
jpj
¼ c2

j=ðvjCjÞ � pj and
oej

opj
jvj
¼ vj=Cj we obtain:
Dvj ¼
ðûI � ujÞDuj � vj

Cj
Dpj

p̂I � pj þ
c2

j

vjCj

� � ; ð2:25Þ
where Cj is the Grüneisen coefficient and c2
j is the square speed of sound.

By inserting this result in (2.24) we get:
T jDsj ¼
vj

Cj

c2
j

v2
j
ðûI � ujÞDuj � ðpj � p̂IÞDpj

p̂I � pj þ
c2

j

vjCj

� � :
We now use the definition of the polytropic coefficient ðc ¼ qc2

p Þ, and obtain:
T jDsj ¼
cj

Cj

Z2
j ðûI � ujÞDuj � ðpj � p̂IÞDpj

Ẑ2
Ij þ Z2

j
cj

Cj
� 1

� �� � ð2:26Þ
with Z = qc and ĉ2
Ij ¼ cjp̂I vj.

Integration of this relation between state ‘0’ and state ‘*’, by assuming small variations around the initial
state ðT 0

j ; v
0
j ; p

0
j ; u

0
j Þ, leads to:
T 0
j ðs�j � s0

j Þ ¼
1

2

cj

Cj

Z02

j ðu� � u0
j Þð2ûI � ðu� þ u0

j ÞÞ þ ðp� � p0
j Þð2p̂I � ðp� þ p0

j ÞÞ

Ẑ2
Ij þ Z02

j
cj

Cj
� 1

� �� � : ð2:27Þ
A sufficient condition in order that ðs�j � s0
j Þ > 0 appears:
If p̂I ¼ p� and ûI ¼ u� leading to qj ¼
1

2
ðu� � u0

j Þ
2

� �
; ð2:28Þ
the entropy inequality is fulfilled.
This choice is not unique, but it guarantees energy conservation and fulfils the second law of thermodynam-

ics. These simple estimates are retained in the following and achieve closure of system (2.18), (2.19).
3. Comparison with the Godunov method

The relaxation method based on (2.19), (2.20) is expected to provide results very closed to the ones of the
Godunov method. Indeed, it is possible to show that both methods are identical when the ideal gas or stiffened
gas EOS are used. However, important differences appear in the computation of contact discontinuities when
dealing with complex EOS. The new method is shown to provide oscillation free solutions while the Godunov
method exhibits spurious oscillations that may result in computational failure.

These differences are demonstrated with both theoretical arguments and numerical experiments. Let us first
demonstrate that the two methods merge in the context of the stiffened gas EOS.

3.1. Stiffened gas EOS

The stiffened gas EOS given by relation (1.2) is considered. With this EOS, it is possible to show that the
new method is identical to the Godunov one.
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Let us sum relation (2.14) over all the sub-volumes:
X
j

Y je�j �
X

j

Y je0
j þ

X
j

p̂IðY jv�j � Y jv0
j Þ ¼

X
j

ûIY jðu� � u0
j Þ �

1

2
u�

2 �
X

j

Y ju02

j

 !
:

With the help of the EOS, ej ¼
ðpjþcjp1jÞvj

cj�1
we have:
1

q

X
j

b�j
p�j

cj � 1
þ
X

j

b�j
cjp1j

cj � 1

( )
¼
X

j

Y je0
j þ

1

2

X
j

Y ju02

j �
1

2
u�

2 þ
X

j

Y j½�p̂Iðv�j � v0
j Þ þ ûIðu� � u0

j Þ�:
The state denoted by superscript * is the relaxed one in which pressures and velocities are equals in all sub-
volumes. Thus:
p�
X

j

b�j
cj � 1

( )
¼ q E0 � 1

2
u�

2 þ
X

j

Y j½�p̂Iðv�j � v0
j Þ þ ûIðu� � u0

j Þ�
( )

�
X

j

b�j
cjp1j

cj � 1
: ð3:1Þ
In the present single phase flow context we have: cj = c and p1j = p1 "j.
Thus, Formula (3.1) becomes:
p� ¼ qðc� 1Þ E0 � 1

2
u�

2 þ
X

j

Y j½�p̂Iðv�j � v0
j Þ þ ûIðu� � u0

j Þ�
( )

� cp1:
The estimates for p̂I and ûI with (2.28) are such that (2.21) is fulfilled. The last equation thus reduces to:
p� ¼ qðc� 1Þ E0 � 1

2
u�

2

� �
� cp1: ð3:2Þ
It is quite interesting to compare this formula with the one obtained with the Godunov scheme. In this case,
the pressure is directly computed from the internal energy obtained from the conservative variables according to:
ðqeÞnþ1
i ¼ ðqEÞnþ1

i � 1

2

½ðquÞnþ1
i �

2

ðqÞnþ1
i

:

The use of the stiffened Gas EOS leads to:
p� ¼ ðc� 1Þ ðqEÞnþ1
i � 1

2

½ðquÞnþ1
i �

2

ðqÞnþ1
i

( )
� cp1 ¼ qðc� 1Þ E0 � 1

2
u�

2

� �
� cp1:
That is exactly the same relation as (3.2). Consequently, the new projection method is equivalent to the
Godunov method. Nevertheless, this result depends on the EOS. For more general EOS, this observation is
no longer valid.

3.2. More general EOS

Let us consider the example of the Mie–Grünesein (MG) EOS: p = (c � 1)qe � cp1(q).
The analysis has to be reconsidered from Eq. (3.1) because p1 is now depending on the density. As the flow

is single phase, we still have cj = c "j. Eq. (3.1) then becomes:
p� ¼ qðc� 1Þ E0 � 1

2
u�

2

� �
� c

X
j

b�j p1jðq�j Þ: ð3:3Þ
With the Godunov scheme, the pressure is computed by:
p� ¼ qðc� 1Þ E0 � 1

2
u�

2

� �
� cp1ðqÞ: ð3:4Þ
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The methods are now different and it is necessary to determine which method is in error. A direct evaluation
of p* given by (3.3) is not easy because the functions b�j and q�j vary between the state ‘0’ and the relaxed state
‘*’. However, there is a case where this calculation is trivial. This case corresponds to a contact discontinuity
moving in a uniform pressure and velocity flow. In this context the pressure at the end of the time step, must be
equal to the initial pressure.

Let us examine formula (3.3): p� ¼ qðc� 1Þfe0 þ 1
2

P
jY ju02

j � 1
2
u�

2g � c
P

jb
�
j p1jðq�j Þ.

As the flow velocity is uniform it reduces to: p� ¼ qðc� 1Þe0 � c
P

jb
�
j p1jðq�j Þ.

By using the definition of the mixture internal energy, qe0 ¼
P

jb
0
j q

0
j e0

j , we obtain:
p� ¼
X

j

b0
j q

0
j ðc� 1Þe0

j �
X

j

b�j cp1jðq�j Þ:
All pressures p0
j and velocities u0

j are the same for the uniform flow under interest. Thus, there is no mech-
anism able to produce a change in the sub-volume fractions bj or in the densities qj.

That is to say:
p� ¼
X

j

b0
j p0

j þ c
X

j

b0
j ðp1jðq0

j Þ � p1jðq�j ÞÞ:
We thus have:
p� ¼
X

j

b0
j p0

j ¼ p0: ð3:5Þ
The new projection method leads to the correct pressure for this particular case of uniform pressure and
velocity flow.

Let us now calculate the pressure with relation (3.4) used in Godunov type methods. The kinetic energies
vanish as previously. By using the definition of the mixture internal energy we have:
p� ¼
X

j

b0
j q

0
j ðc� 1Þe0

j � cp1ðqÞ:
By using the EOS in each sub-volume we get:
p� ¼
X

j

b0
j p0

j þ c
X

j

b0
j p1;jðq0

j Þ � p1ðqÞ ¼ p0 þ c
X

j

b0
j p1;jðq0

j Þ � p1ðqÞ:
In order to have a correct evolution of the pressure, it is necessary that p* = p0. This condition is true if and
only if:
X

j

b0
j p1;jðq0

j Þ ¼ p1ðqÞ with q ¼
X

j

b0
j q

0
j : ð3:6Þ
This condition is satisfied if and only if p1(q) is a linear function of the density, or if the densities q0
j are

all equal. In the general case, p1(q) is a nonlinear function and the density is discontinuous at contact sur-
faces. It implies that the Godunov scheme cannot preserve a contact discontinuity moving in a uniform flow
when the MG EOS is used. This result is also true for any EOS involving nonlinear density or energy
contributions.

3.3. Summary of the relaxation-projection method

The new method is able to solve contact discontinuities with real gas EOS with oscillation free solutions.
The relaxation procedure allows the pressure computation in both Lagrangian and Eulerian cells from the
three non-equilibrium states resulting of the wave’s propagation.

When the computation is purely Lagrangian, the relaxed velocity is given by (2.17), the average density is
given by (2.15) and the relaxed pressure is obtained by the resolution of System (2.18), (2.19).

When the solution strategy is based on Eulerian projection, there is no need to compute the Lagrangian cell
pressure. The Lagrangian conservative variables vector is projected in a fixed (Eulerian) grid. The situation is
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depicted in Fig. 1: Three states (actually 1 up to 3 states), defined by three Lagrangian cells, can overlap a
given Eulerian cell. From these three states the determination of a unique state into the Eulerian cell is
obtained by relation (1.7). The relaxed pressure is computed by solving System (2.18), (2.19).

At the end of this time step, both conservative and primitive variable vectors are known in Eulerian cells.
Such computation preserves interface conditions.

Let us summarize the present algorithm:

– At the initial time, the conservative variable vector U = (q,qu,qE)T is defined in all Eulerian cells. The
Lagrangian and Eulerian cells are merged at the initial time.

– At each Lagrangian cell boundary, the solution of Riemann problems is solved with an iterative 2-shocks or
approximate HLLC solver [19] with Davis [5] wave’s speeds estimates. The Riemann problem solution pro-
vides the various wave speeds and states. From their knowledge, the three sub-volumes and states are
obtained in the Lagrangian cell.

– The conservative variable vector is updated with (1.5). The Lagrangian cell relaxed pressure is obtained by
solving (2.19), (2.20). Pressure computation is not necessary if the solution is immediately projected onto
the Eulerian grid.

– The motion of the Lagrangian cell boundaries implies an overlapping with the Eulerian cells. It defines new
sub-volumes with states corresponding to those of the Lagrangian cells. The number of sub-volumes per
Eulerian cells ranges from 1 to 3. The conservative variables vector is updated with (1.7). The relaxation
procedure (2.18), (2.19) is then used with the three sub-volumes and states for the pressure computation.
The conservative and primitive variables vectors are now determined in the Eulerian cell. However, to pro-
ceed to the next time step, a specific procedure is needed.

– In order that the transformation from primitive to conservative variables be reversible and conservative the
adiabatic exponent has to be modified:
cnum ¼
p� þ hqihei

hqihei � p1ðhqiÞ
; ð3:7Þ
where p* denotes the pressure obtained from the relaxation procedure (2.18), (2.19) and the symbol ÆÆæ repre-
sents cell averages. Indeed, the relaxed pressure has to be equal to the one given by the true equation of state:
p = (c � 1)ÆqæÆeæ � cp1j(Æqæ).
– The numerical adiabatic exponent is convected during the Lagrange step. It means that the following equa-

tion is solved:
dcnum

dt
¼ 0; ð3:8Þ
with initial conditions cnum = c.

Corrections related to Eqs. (3.7), (3.8) are particularly important for the computation of the next time step.
Consider for example the advection of a density discontinuity in uniform pressure and velocity fields. At the
end of the first time step the conservative and primitive variables vectors are perfectly determined. The second
Lagrangian step is now done. For this simple advection test, the waves incoming the Lagrangian cell have zero
amplitude. Thus, the densities and internal energies of each sub-volume are equal to the Eulerian cell averaged
ones of the first time step. Thus, the pressure in the Lagrangian cell is given by p = (c � 1)qjej � cp1j(qj) =
(c � 1)ÆqæÆeæ � cp1j(Æqæ), where j denotes any sub-volume of the Lagrangian cell. This pressure is equal to
the initial uniform pressure only if (3.8) is solved.

The need to define the numerical adiabatic exponent (3.7) and integration of (3.8) are consequences of the
cell microstructure that is lost at the end of each time step.

3.4. Numerical example

The example of Fig. 3 with the Cochran–Chan EOS is again considered with the same conditions. This EOS
can be expressed under Mie–Grüneisen form with c = 1 + C and p1ðqÞ ¼ 1

cðqCekðqÞ � pkðqÞÞ. We consider the
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same advection problem as in Fig. 3. The results are shown at the same instant in Fig. 6. The same mesh is
used.

It is clear that the new method improves the accuracy. However, its main drawback is related to its com-
putational cost. The pressure is computed with the relaxation system (2.18), (2.19) solved by the Newton
method. Such a procedure is very similar to an iterative Riemann solver, resulting in a significant computa-
tional cost. A simplified version of the algorithm is thus necessary.

4. A simplified relaxation method: the numerical EOS

The main difference with the Godunov method relies in relation (3.3):
 400
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The use of this equation of state requires computational efforts as the sub-volume fractions b�j and densities
q�j at relaxed state are determined by the resolution of system (2.18), (2.19). The differences between the pres-
sure computed with the Godunov method (3.4) and the present one (3.3) are arbitrarily large at contact dis-
continuities. But the contact discontinuity is also the place where the sub-volume fractions have the smallest
variations, in particular during the projection stage. We propose to introduce minor changes in the algorithm
presented in Section 3.3. The pressure is no longer computed by solving the nonlinear system (2.18), (2.19). At
the end of the projection step the pressure is computed with the following numerical EOS:
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with the cell averaged density Æqæ and internal energy Æeæ (this is not different of (3.3)). The sub-volume frac-
tions bj and densities qj are taken equal to those of the Lagrangian cells. It means that frozen volume fractions
are used and that variations due to pressure relaxation are neglected. Doing so, the method is much faster
because iterative procedures are removed.

The accuracy of this method is now compared to the Godunov one, with exact Riemann solver. A shock
tube problem involving liquid nitromethane (as in the previous numerical example) is considered. The coeffi-
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Shock tube problem with Mie–Grüneisen EOS. The solution obtained with the Godunov scheme is shown on the left column with
ls. The solution obtained with the numerical EOS (4.1) is plotted in the right column with symbols. The exact solution is shown with
ines. The new method is free of oscillations.
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cients of the Cochran–Chan EOS are given in Section 1.3. At the initial time, the high pressure chamber is set
to 2 · 1010 Pa, while the pressure is set equal to 2 · 105 Pa in the low pressure chamber. The fluid density in the
high pressure chamber is set equal to 1134 kg/m3 and to 1200 kg/m3 in the low pressure chamber. The initial
discontinuity is located at x = 0.6 m. The Godunov scheme and the new method are compared to the exact
solution. In the new method, the numerical EOS (4.1) is used. The mesh involves 500 cells and the solutions
are plotted in Fig. 7 at time t = 50 ls.

A magnified view of the velocity and pressure profiles is given in Fig. 8.
Clearly the numerical EOS (4.1) improves the computations and results in considerable computational time

saving compared to System (2.18), (2.19).

5. The numerical EOS for interface problems

A variant of the preceding method can be developed for the computation of interfaces separating compress-
ible fluids governed by different equations of state. Let us take the example of an interface separating a com-
pressible liquid, governed by the stiffened gas EOS (1.2) with parameters c1 and p11, and a gas governed by the
same equation of state with parameters c2 and p12. These EOS parameters are constant in each fluid, but are
discontinuous at the interface.

Contrarily to the Mie–Grüneisen case, the adiabatic exponents are no longer constant and the numerical
EOS now reads, from (3.1):
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This relation is used to compute the pressure in Eulerian cells, at the end of the projection step. As previ-
ously with the Mie–Grüneisen EOS, the sub-volume fractions bj are taken equal to those of the Lagrangian
cells. It means that volume fraction variations due to pressure relaxation are again neglected. The numerical
EOS allows the computation of numerical EOS parameters:
1

cnum � 1
¼
X

j

b0
j

cj � 1
() cnum ¼ 1þ 1P

j
b0

j

cj�1

;

cnump1;num ¼
P

j
b0

j cjp1j

cj�1P
j

b0
j

cj�1

() p1;num ¼
cnum � 1

cnum

X
j

b0
j cjp1j

cj � 1
: ð5:2Þ
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lines). A mesh involving 500 cells is used and the solution is shown at time t = 241 ls.
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The numerical EOS parameters are then convected during the Lagrange step. It means that the following
equations are solved:
dcnum

dt
¼ 0;

dp1;num

dt
¼ 0:

ð5:3Þ
This method is reminiscent of [15] method. There are however important differences:

– During the projection step, the update of cnum and p1,num with the help of (5.2) corresponds to the addi-
tion of a source term in Eq. (5.3).

– Also, when a shock interacts with an interface, there is the possibility to account for the sub-volumes frac-
tions bj variations. The pressure in the Eulerian cells is computed with the iterative version based on rela-
tions (2.18), (2.19). The numerical EOS parameters cnum, p1,num are computed with formulas (5.2) using
relaxed state sub-volumes fractions b�j instead of b0

j . The presence of a pressure wave inside the Eulerian
cell is detected if Maxjð

pj�p1

p1
Þ > 0:01.

The method is illustrated on the following example. Let us consider a 1 m length shock tube, containing two
chambers separated by an interface at location x = 0.7 m. The high pressure chamber on the left part is filled
with liquid water (c1 = 4.4, p11 = 6 · 108 Pa), the initial pressure is equal to 109 Pa and the initial density is
equal to 1000 kg/m3. The low pressure chamber on the right is filled with air (c2 = 1.4, p12 = 0 Pa), the initial
pressure is equal to 105 Pa, and the density is equal to 1 kg/m3. The fluid is initially at rest in both chambers.
The solution is shown at time t = 241 ls. A mesh involving 500 cells is used.

The solution of the Lagrange-projection method with piecewise linear reconstruction and Superbee limiter
in both Lagrange and projection steps is used. The second order extension of the present method is detailed in
Appendix A. In Fig. 9, the density, pressure and velocity profiles are shown with symbols and compared to the
exact solution with lines.

This test shows that the method is able to solve interface problems in the presence of strong shocks and very
large density ratios.
6. Conclusion

A new relaxation-projection method has been built for the pressure computation when complex EOS are
involved. The Godunov averages are not compatible with a direct use of the equation of state whose validity
is restricted to local variables, not averaged ones. The new method determines the pressure as an asymptotic
solution of a relaxation system involving the various sub-volumes present in a computational cell. These sub-
volumes are associated to the propagation distances of the various waves coming from the cell boundaries.
The method gives a cure to the pressure computation at contact discontinuities when complex EOS are used:
real gases and discontinuous EOS. A simplified version is derived (the Numerical EOS) for the building of a
fast algorithm.

Both methods (iterative and simplified) provide conservative and oscillation free results. They are validated
against exact solutions of contact discontinuities with Mie–Grüneisen EOS and liquid–gas interfaces.

Its extension to the non-conservative multiphase flow model of Kapila et al. [8] is the aim of a companion
paper [12].
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Appendix A. Second order extension of the numerical EOS method for interface problems

The results of Section 5 are obtained with the following second order extension of the method. The strategy
follows the lines of the MUSCL algorithm [21,22]. However the presence of an interface necessitates specific
ingredients as detailed hereafter:

� Second order Lagrange step
– The conservative variables vector U is evolved during a half-time step in the Lagrangian cell, with the

help of Formula (1.5).
– The primitive variables W = (q,u,p)T slopes dW i ¼

W nþ1=2
iþ1

�W nþ1=2
i

xnþ1=2
iþ1

�xnþ1=2
i

are computed in each cell. The cell center

positions are obtained from the cell boundary positions, updated with (1.3): xnþ1=2
i ¼

xnþ1=2

iþ1=2
þxnþ1=2

i�1=2

2
.

– A slope limiter is used : dW i ¼ UðdW i�1; dW iÞ, where U denotes an appropriate limiter function (Min-
mod, Superbee, etc.).

– The primitive variable vector is extrapolated from the cell center to the cell boundaries by using the pre-
ceding limited gradients.

– The Riemann problem is solved and the Lagrangian flux is computed.
– The conservative variable vector is evolved over a complete time step with formula (1.5) with the preced-

ing Lagrangian flux.
– The pressure is computed with: pnþ1

i ¼ ðcnþ1
num;i � 1ÞðqeÞnþ1

i � cnþ1
num;ip

nþ1
1num;i; Where the integration of (5.3)

reduces to: cnþ1
num;i ¼ cn

num;i and pnþ1
1num;i ¼ pn

1num;i.
� Second order projection step

– The density and numerical EOS parameters gradients are computed:
dqi ¼
qnþ1

L;iþ1 � qnþ1
L;i

xnþ1
iþ1 � xnþ1

i

;

d
1

cnum � 1

� �
i

¼
1

cnum�1

� �nþ1

L;iþ1
� 1

cnum�1

� �nþ1

L;i

xnþ1
iþ1 � xnþ1

i

;

d
cnump1;num

cnum � 1

� �
i

¼
cnump1;num

cnum�1

� �nþ1

L;iþ1
� cnump1;num

cnum�1

� �nþ1

L;i

xnþ1
iþ1 � xnþ1

i

;

where the subscript L denotes the variables in Lagrangian cells.

– These gradients are limited as previously during the Lagrangian step.
– In order to avoid spurious pressure and velocity oscillations, the momentum and total energy gradients

are computed by:
dqui ¼ unþ1
L;i dqi;

dqEi ¼ pnþ1
L;i d

1

cnum � 1

� �
i

þ d
cnump1;num

cnum � 1

� �
i

þ
ðunþ1

L;i Þ
2

2
dqi;
where the pressure and velocity gradients are forced to vanish.
– The sub-volume fraction bj appearing in Formula (1.7) is computed.
– The piecewise linear conservative variables vector is averaged over each sub-volume present in the Eule-

rian cell in order to determine Unþ1
j .

– The conservative variables are averaged with the help of (1.7).
– The cell pressure is computed by (5.1) and the numerical EOS parameters by (5.2).
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